N »;.ugg:;; Y
. D

AD-A253 360 ADRE
Wiy Q5 mszD

~ DEFENCE RESEARCH AGENCY

MEMORANDUM No: 4587

Z THRGUGH PICTURES

Author: G P Randell.

DEFENCE ESEARCH AGENCY.
*MAWERN
- WORCS.

,_ 16553
92628 07 SELT

MEN.ORANDUM No: 4587

0126745 311135

AN EESAANS SRRt ansSssanR mu

CROWN COPYRIGHT (c)
1992

CONTROLLER

HMSO LONDON

RSARARRSAARAARARASARNRRASANS DREY

Reports quoted are not necessarily available to members of the public or to commerciel
organisations.

DEFENCE RESEARCH AGENCY
Memorandum 4587

Title: Z Through Pictures
Author: G P Randell
Date: March 1992

Abstract

The purpose .. this memorandum is to propose diagrams which may be
generated from a Z specification either fully automatically or with
human intervention. The main purpose of such diagrams is to illustrate
the specification and thus help a reader to understand it and to validate

it. Examples of the diagrams proposed are given.

DTIC QUALITY INSPECTED 3

A .:i-s.'!i‘).' .F;]'

rIve ;
Copyright ’:\a‘.u":‘oad 8 ;
© Cdwaiieatten
Controller HMSO, London E -
1992 Diztrivetien/ |
i

_ ;f.'t‘!ilability Cedes

‘ " Tivail amd/or
Dist | Spectal

|

Contents

1. Introduction. ..ot e e e 1
P | o Ty R PPUTRRN 3
2.1 Module Charts.......ccccoviuienieiieririeieren e e e eneens 4
2.2 Schema Usage Mapscooveiiiiiiiiiiiiiiieieinir e eeeen e eaees 6
2.3 Data MaPS...ccciiiiiiiiiiiiiiiiiiieeeeire ettt e r e aanns 8
2.4 Detailed Schema Maps..........ccccvuieeeiieeviiiiie e 12
3. Data Flow Diagrams......ccuviniiiiiiiiieiiiieriieniiineeeeenieeeenenneneeneeaeneensns 13
4. Other Diagramsccuviuiiiiiiiiiiniieiciiieeer e e e eine s eneennses 18
4.1 Showing the Detail of Schema Composition................cccouveen.n. 18
4.2 Showing the Detail of Schema Piping......cccooccvvviivvivriiiicenennn. 19
4.3 Showing Other Schema Operations...........c.ccccoveeiiviiiiinrinninn... 2
4.4 Structure CRarts.......ccceeiuiiiiieiiriiiiiii it eeertenerneenes 21
4.5 Entity Life Histories.......cccovviiiiiiiiiii e, 4
4.6 Venn Diagrams...c.cc.iuiiiiiiiiiiiiiiieiin et eeenraenereaaaenasns 25
I 014+ 141 11 13 1« V- J PSPPI 26
303 =3 =3 o Vo1 ST 2
Acknowledgementccouieiiiiiiiiiiiiii 2

Annex A - An Example Z Specification

AL INtroduction ...oiiuiieiieie e e A-1
A2, BasiC T yPeS ittt e nes A-1
A3. The Book-Buying Sub-System............cocviiiiiiiiiiiii e, A-3
A4. The Borrowers Sub-System..........ccoooiviiiiiiiiiii e A-8
A5. The Shelf-Stackers Sub-Systemcocoviiiiiiiiiiiiin A-11

A6. The Overall System........cccoooiiiiiiiiiiiiiiiii e A-14

L. Introduction

The need for validating a system specification is paramount. That is, a
specification of a system, whether it be software, hardware or a
combination of both, must be examined to ensure that it accurately
reflects the real requirement, before the development of the system
begins. Validation is often thought of as answering the guestion: "Are
we building the right system?". Various techniques may be used for
validation, from reviews and walk-throughs to rapid prototyping and
analysis. Whichever techniques are used, one in particular is almost
certain to feature, and that is reading the specification. In order to be
sure that a specification does reflect the real needs, it must be
understood.

A specification must not only be valid (that is, describe the right system),
it should also be complete, consistent, and unambiguous. Often
specifications are written in a natural language such as English. But
English is often ambiguous, and it is very difficult to show convincingly
that such specifications are complete or consistent. In an attempt to
improve the quality of specifications, formal languages have been
developed. These languages are characterized by being based on sound
underlying mathematical principles, such as set theory. They are
precise and unambiguous, having a formal syntax and semantics, and
allow for the possibility of proving that designs and the final
implementation meet the specification.

However, formal specifications can be difficult to read as they use
mathematical symbols which may appear daunting at first sight. They
also contain more detail than is often the case in a natural language
specification, as the use of mathematics forces precision. Formal
languages require mathematical training to use well. Thus validating a
formal specification can be difficult.

The purpose of this memorandum is to describe techniques for
producing diagrams which display the structure of a formal
specification and help the reader understand it. Diagrams are easier to
take in, and can show a variety of detail. One of the main barriers to
understanding formal specifications is that they are often presented
bottom-up. That is, basic type information and operations are first
specified, and these are built up into more complicated operations and
functions. This is especially the case with specifications written in the
formal language Z [1,2], with which this paper is primarily concerned.
However, it is often easier to understand a system top-down. That is,
first concentrating on sub-systems, then sub-sub-systems, and so on, to
the required level of detail. Thus diagrams which show the structure of
a formal specification, how all the different pieces fit together, would be
very useful and would provide much needed context.

Apart from structure, formal specifications can also be interpreted in
terms of data flows. Rules for translating a suitable Z specification into a
data flow diagram have been developed [3,4], and these may be used to

produce a hierarchy of diagrams, corresponding to the structure of the
specification.

In this memorandum, a set of possible diagrams is presented, and
illustrated by example. Throughout, it is assumed that only those
diagrams appropriate will be produced in any one case. That is, a "tool-
kit" approach is adopted, whereby a selection of techniques is made
available, but the use of these techniques is not prescribed.

Diagrams are not only useful for the reader of a specification, but are
also useful for the writer too. In particular, drawing diagrams may
make mistakes or bad structure apparent. It is often too easy to get
involved in the detail of a formal specification, while losing track of what
areas of the system being specified have been covered. It is also easy to
lose track when combining small operations into larger ones,
particularly remembering to specify what happens to all state variables,
and all outputs, as noted in [5).

Diagrams may also help with maintenance of the specification. That is,
if a diagram shows which definitions are dependent on which, then the
impact of change can more easily be assessed and those components of
the specification which are affected can be traced. Without such a
diagram, this becomes very difficult.

For the purpose of this memorandum, it is assumed that the
specification has been written in Z and, moreover, that it has been
structured. This may either be done, if the Z support tool allows, by
splitting the specification into modules or documents, or simply by
dividing the specification document itself into chapters or sections. The
reader is assumed to have some familiarity with Z to understand some
of the more detailed diagrams. It is the intention of this work to allow a
reviewer of a specification to more easily understand the specification,
and to see how it fits together.

The remainder of this memorandum is structured as follows. Section 2
proposes a set of diagrams which have been called "maps”. These
diagrams are to show which things are used where, and to make the
structure of the specification more apparent. They provide a top-down
view of the bottom-up specification. Section 3 briefly covers the
production of data flow diagrams. Section 4 proposes other diagrams,
which do not come into either of these first two categories, and section 5
contains the conclusions of the memorandum.

Annex A contains an example Z specification, which will be used as the
basis for the examples given in the main body of the memorandum.

2. Maps

The first category of diagram proposed is that of maps. These diagrams
are to show the structure of a specification, how things fit together.
Maps may be produced at many levels of detail, showing just the
schemas defined, or how types are constructed, or showing where all
the components in a schema are defined.

As with all diagrams, these maps should be kept to an understandable
size. A large complicated diagram hinders more than it helps. A
hierarchy or set of diagrams should be produced rather than one large
one. Maps should also be used in conjunction with an index, which
enables the reader not only to find the name of a component schema,
say, but also to find exactly where in the specification document that
schema is defined. The production of such an index is outside the scope
of this memorandum.

Four sorts of maps are proposed: module charts, which show how the
different sections of the specification fit together; schema usage maps,
which show how state and operation schemas are built up and used;
data maps, which show how complicated data structures are built up;
and detailed schema maps, which show how all the components of a
schema are constructed. These are discussed in more detail below.

The following simple specification of a library system will be used in this
section and throughout the remainder of this memorandum as the basis
for all the example diagrams. The complete specification is given at
Annex A and is structured into five parts:

1. The specification of the types of data which are used by the
different sub-systems of the library.

2. The book-buying sub-system which is responsible for ordering
new books from a bookshop, paying for them when they arrive,
and preparing them for being put on the library shelves ready
to be loaned to borrowers.

3. The borrowers sub-system which is responsible for keeping
track of registered borrowers and the books they have out on
loan, including functions to add new borrowers, for a borrower
to take out and return a book, and to lose a book.

4. The shelf-stackers sub-system, which is responsible for
stacking returned and new books on the shelves, and for
sending damaged books away to the bookbinders for repair and
getting them back again.

5. The overall system, where the operations which cross the sub-
system boundaries are specified. This specification actually
only contains one such operation.

2.1 Module Charts

Considering first the overall structure of a specification, a map based on
the module chart used in the Yourdon method [6) may be drawn to show
how the different sections of that specification interact with one another.
Such a diagram would present a top-down view of the system being
specified, and allow the reader of the specification to understand how
the sections fit in to the overall system description.

Figure 1 below shows a simple module chart for the example
specification.

The Overall
System

The Shelf-Stackers The Borrowers
Sub-System Sub-System

The Book-Buying
Sub-System

Basic Types

Figure 1 - A Simple Module Chart

This diagram shows the five parts of the specification, in a top-down
manner. That is, the overall system specification at the top relies on
definitions in the book-buying sub-system and in the borrowers sub-
system. Similarly, the shelf-stackers sub-system use definitions from
the basic types part of the specification, and so on.

However, a simple chart such as that shown in Figure 1 above gives no
indication of which components from any section of specification are
used by any other section. A logical extension of this sort of map is to
label the lines joining any two sections of the specification in the simple
chart with the names of the components, be they types, constants,
schemas or whatever, being used. This will result in an annotated
module chart.

Folr the simple example, this would produce the chart shown in Figure 2
below.

The Overall
System
Lose Book
Replace . TieB
: Lost Boo :2 Borrowers
gg_sst;iﬁim‘:km Sub-System
Trolley
Trolley address
. The Book-Buying loan
fiction Sub-System date
nonfiction name
reference . book id
library book lm:;ok reference
book info library book
book id
book
Basic Types

Figure 2 - An Annotated Module Chart

This more complicated diagram shows the identifiers used by the
different parts of the specification. Thus the borrowers sub-system
makes use of the definitions of "loan”, "date”, "name”, "book id",
“reference” and "library book" from the basic types section, together
with the definition of "address” and "Trolley” from the book-buying sub-
system. From this chart, it can be seen that "Trolley” is declared in the
book-buying sub-system, and used by both the other sub-systems. So
perhaps it would have been better to put this declaration in the basic
types section.

The usage of different components by different sections of specification is
shown up by the annotated module chart, rather more than it is in the
specification itself. Thus these diagrams give a visual way of checking
the coupling between different sections of specification, that is, how
much one section relies on the definitions in another. The more reliance
there is between sections the more difficulties may arise in the future
when the specification is changed or refined towards an
implementation. For example, changing the structure of a type used by
many sections will require all those sections to be checked and possibly
changed as well.

Thus these diagrams are not only useful for providing a top-down view
of a bottom-up specification, but are also useful for maintenance
purposes.

2.2 Schema Usage Maps

Just as module charts show the overall structure of a specification at the
module level, schema usage maps can show the connections between
schemas, that is, which schemas are included within which others.
This sort of map is particularly useful to show how schemas describing
operations on state are built up. As before, these maps are top-down, so
fheks(cihema at the top includes those schemas below it to which it is
inked. »

The maps can be used to show not just the break-down of one operation
schema into its component parts, but to show how all the schemas in
one section of specification are related.

An example schema usage map for the book-buying sub-system of the
library example is shown in Figure 3 below.

Order New Process
Book New Book
Buy From Replace Receive Classify
Catalogue Lost Book Book Book
=Books ABooks AOrders ATrolley
Database Database Pending -
Books Orders Trolley
Database Pending

Figure 3 - A Map of the Book-Buying Sub-System

This diagram shows the names of all the schemas used in the book-
buying sub-system. This map is top-down, so, for example, the schema

"Replace Lost Book" is built up from the schemas "ABooksDatabase”
and "AOrdersPending”. The schema is actually defined as:

- ReplacelostBook
ABooksDatabase
AOrdersPending
lost? : book_id
order! : order_form

order!.o_n = new_number

order!.b_i = (bookmap lost?).b_i

order!.add = our_address

ordermap' = ordermap u {new_number — order!)

bookmap' = { lost? } 4 bookmap

vhere

new_number : order_number I new_number ¢ dom order_map

This schema has two components other than schemas. If all of the
components of this sch-na were to be shown on a diagram then the idea
of a map would need to be extended to show how types are constructed,
as well as schemas. Diagrams describing the construction of types are
discussed in sections 2.3 (Data Maps) and 4.4 (Structure Charts) below.
A composite map showing all the details of a schema's signature,
including both schema inclusions and declarations, is proposed in
section 2.4 below.

Figure 3 may be simplified by making use of the delta and xi conventions
of Z. Given a schema S then AS and =S are usually defined as:

AS —— and 25—
[S S
E S'
s = ©5'

Provided delta and xi are used like this, the construction of AS and =S
are known for any schema S and so this information is not really needed
on the map. Thus either the bottom line or the one above it of Figure 3
could be removed.

These schema usage maps are just as useful as module charts: they
show how the schemas in a section of specification fit together. They are
also just as useful for maintenance purposes.

2.3 Data Maps

In this section a map very similar to those in the previous sections is
proposed, to describe how complicated data structures are built up.
These diagrams work in exactly the same way as the maps proposed so
far, with complicated structures at the top of the diagram being broken
down into basic types at the bottom. In Z, types are constructed from
given sets and the type constructors product and power set. For
example, a function is really a set of pairs of elements. Showing this
level of construction is not very helpful. A much more useful diagram
would show constructs at a "user level”, such as functions, free types, or
schemas, for example. The maps proposed in this section are at this
level. An alternative diagram for data structures, the structure chart, is
proposed in section 4.4.

The first example is a map showing how a free type is constructed. The
Z definition, taken from the example specification at Annex A, is:

book_type ::= fiction nonfiction reference

The map produced is a top-down tree-shape diagram and is shown in
Figure 4 below.

1
book
type

fiction nonfiction ~ reference
, :

Figure 4 - The "book type" Free Type
A general free type may contain constructor functions mapping
elements of complicated sets onto elements of the free type. In this case a

tree structure may be drawn with the name of the constructor function
labelling the appropriate line. To show this, consider the free type:

tgpe1::-a|b|c¢C) d « 0>
where C and D are any sets.

This may be represented by the diagram shown in Figure 5 below.

typel

[¢]
(=%

a b C D

Figure 5 - Representing a General Free Type

This diagram has arrow heads on the lines which have associated
constructor functions. These¢ just show the direction of the function,
from the set "C" to the free type "typel” in the case of the constructor
function "c", for example.

The idea of using tree-shape diagrams to show elements of a free type
was also used in [7]).

Maps can also be drawn for a data structure defined as a schema, in
much the same way. The name of the schema is at the top of the tree,
and the compor -ts of the schema are linked to it in the now familiar
way. For examu -, consider the schema:

r book_info
ti @ tidle
au : author

pub : publisher
p-d : publication_date

where "author”, "publication date"”, "publisher” and "title" are all given
sets.

The corresponding data map is given in Figure 6 below.

book
info

author || pubiication| |publisher || title
date

Figure 6 - The "book info" Schema Type

Note that the lowest level on any of these data maps consists of given sets
or simple branches of free types (constants).

The problem with the maps shown in Figures 4 and 6 above is that it is
not apparent from just the diagrams that one represents a free type and
one represents a schema. Thus an annotation is proposed, to make this
distinction clear. This is the reason for drawing boxes around the
names of data: it means symbols can be added to the top right corner of
the box, to indicate what sort of data structure is being defined. The
symbols proposed are summarized in the following table:

"Symbol Meaning
[Given set
- Relation
— Function!
: Schema
ft Free type?
iP Power set
x Product

1 Different function arrows may be used to show total or partial
injections, surjections and bijections.

2 In addition, arrows will be used to show the direction of constructor
functions, as in Figure 5 above.

Note that no symbol is given for constants in a free type definition. Using
these symbols, the free type "book-type’ and the schema "book-info”
would be described by Figures 7 and 8 below, respectively.

book ft

nwpe |

fiction nonfiction reference

Figure 8 - The Annotated Data Map for "book-type"

10

book E
info

] biication L) [] []
author Ez’w canon publisher tide

Figure 8 - The Annotated Nzta Map for "book-info"

More complicated data maps can be drawn, showing the relationships
between all the data structure in a section of specification, if required.
Care must however be taken to ensure that the diagram does not become
too complicated, else it will become unreadable and thus defeat its
purpose. It is better to draw several smaller diagrams than one too large
one.

If a diagram is becoming too large, then a double box should be drawn
around one or more items, and these expanded on separate diagrams.
Figure 9 below shows two non-annotated diagrams linked in this way
(although having two separate diagrams is not strictly necessary in this
case).

| order
book
‘ fo’rm info
|
|
!
{
g{g:;er address ?:fgk I author g:ghcauon publisher | yige

Figure 9 - Linked Diagrams

In the left hand diagram, a double box is drawn around "book info" to
indicate there is another diagram (shown on the right) which explains
how this is constructed.

As before, these maps are useful not only to show a top-down view and to
explain where things are used, but they are also useful for subsequent
refinement and maintenance when the impact of change needs to be
assessed.

1

Cmmie Ty

2.4 Detailed Schema Maps

The final sort of map proposed is one which combines the previous two.
That is, it shows all the detail of the schema inclusions and the
declarations in a schema's signature. A sensible size diagram should be
produced, therefore it will often be unwise to show the complete break-
down of the types.

For example, consider the schema describing the operation to replace a
lost book, given in section 2.2 above. The detailed schema map for this is
given in Figure 10 below.

Replace
Lost Book

Orders Books
Pending

form book
data
order address '
number ?:fgk ?)?;ek ‘

Figure 10 - The "Replace Lost Book" Operation

As in section 2.3 above, double boxes are drawn around data structures
which are further described by their own data maps. The same
annotations could be used to add detail to this map.

3. Data Flow Diagrams

Data flow diagrams (DFDs) are diagrams for concisely describing the
flows of information to, from and within a system. As such they are
ideal for understanding and validating the description of the
functionality of a system. This is because:

- they are a pictorial representation which is relatively quick to
produce and easy for users to understand,

- interconnections are shown graphically, making the effects of
change easy to identify, and

- the DFD technique of top-down expansion, also called levelling,
lets the reader progress from high to low levels of detail in a
controlled way.

DFDs contain four types of symbols (elements). These are:

1. External entity - a source or recipient of data outside the
system. It is usually what makes things happen inside the
system,

2. Process - an activity which transforms or manipulates data.

3. Data store - a collection of any type of data in any form.

4. Data flow - shows a movement of data, with an arrowhead

indicating the direction of flow.

The conventions of a data flow diagram are shown in Figure 11 below.

datal
data2 data3 datad
Extgmal
Entity 1 Datastorel External
Entity 2

Figure 11 - A Data Flow Diagram

The conventions shown here are those according to the Yourdon
method. In this method, processes are represented as circles (bubbles),
data stores by open ended rectangles, and external entities as
rectangles. Data flow diagrams are also used in SSADM (Structured

Systems Analysis and Design Method), but with slightly different
conventions.

DFDs are developed as a hierarchy of diagrams. The top level diagram is
called the Level-1 diagram and shows the basic characteristics of the
system. The main system functions are represented by process bubbles
on the Level-1 DFD and each of these bubbles may be expanded into a
lower level DFD. Each process bubble can be thought of as a "window"
into the diagram at the next level down in the hierarchy. The lower level
diagram contains an expansion of the detail of the higher level.

A context diagram is also often drawn, which is a special type of DFD. It
is the most abstract description of a system, and contains just one
process bubble representing the whole system. The context diagram is
used mainly for scoping the system as it shows those external entities
with which the system interacts and the data which they give rise to or
use.

Provided a Z specification is written in a state plus operations style, data
flow diagrams are ideal diagrams to accompany that specification.
Rules for generating a data flow diagram from a Z specification have
been given elsewhere [3,4]. This memorandum gives examples of the
diagrams generated from the specification at Annex A, and explains
how the diagrams produced may be organised into a hierarchy for
presentation purposes.

The hierarchy of DFDs for the example specification is shown in Figure
12 below.

Context Diagram

(Figure 13)
Level-1 DFD
(Figure 14)
Book Buying Borrowers Shelf Stackers
Sub-System Sub-System Sub-System
(Figure 15)
"Process New Book" "Order New Book" "Stack Shelves"
Process DFD Process DFD Process DFD

(Figure 16)

Figure 12 - The Hierarchy of Data Flow Diagrams

14

e ————

The example specification is in five parts: one section introducing basic
types, three sub-systems, and one part which describes the only
operation which crosses sub-system boundaries. There is little point
drawing a data flow diagram for the first section, as it contains no state
schemas and no operation schemas.

The context diagram for this example is shown in Figure 13 below.

Bookshop
order
form
book
Customer
book
membership card
book id
library
book date
Book Calendar
Binders

Figure 13 - The Library System Context Diagram

The context diagram is the most abstract data flow diagram of a system,
and is used mainly to scope the system, that is, to show which external
entities the system interacts with. For simplicity, if a data flow goes
from an external entity to a process and back, then rather than draw two
arrows one is drawn, but with arrowheads on both ends. For example, a
membership card is given by a customer (borrower) to the library when
a book is borrowed (part of the borrowers sub-system), and is returned on
completion of the transaction, thus one double-headed arrow, labelled
"membership card”, has been drawn between the customer and the
borrowers sub-system. This removes clutter and so aids readability of
the diagram.

The next level down in the hierarchy is the Level-1 diagram, shown in
Figure 14 below.

v,

Customer

applicatio
bookid ~ form

book

Binders

Figure 14 - The Level-1 DFD

This diagram has three process bubbles, corresponding to the three sub-
systems. The data flow from the borrowers sub-system and the book-
buying sub-system is the identifier of a lost book which is sent from the
borrowers sub-system to the book-buying sub-system who will replace
the book by buying a new copy. This flow is derived from the fifth part of
the specification which specifies the "LostBook" operation which crosses
these two sub-system boundaries. As before, double-headed arrows have
been used to keep the diagram readable.

The trolley data store also appears at the top level, as it is used by more
than one sub-system. Those data stores which are used only by one sub-
system, such as the book-buying sub-system's books database, are within
that sub-system and so do not appear on the top level data flow diagram.

Below the Level-1 diagram is one diagram for each sub-system. In order

to generate a DFD describing a sub-system, the state schemas (which
will be translated into data stores), and operations (which will be

16

translated into processes) must be identified. In the book-buying sub-
system there are three state schemas: "BooksDatabase”,
"OrdersPending” and "Trolley". Deciding which operations should go
on the DFD for this sub-system is more interesting. This is because the
operation "OrderNewBook" is defined in terms of "“BuyFromCatalogue"
and "ReplaceLostBook”, and also "ProcessNewBook" is defined in terms
of "ReceiveBook" and "ClassifyBook". The most sensible approach seems
to be to put only the top-level processes on the DFD, namely
"OrderNewBook" and "ProcessNewBook". This results in the data flow
diagram shown in Figure 15 below.

order form '
ch
catalogue eqe
Orders Pcnding/
\ library book
Iboo;'d\ Books Database

Y
Trolley

Figure 15 - The Book-Buying Sub-System DFD

The process "Lost Book" on this diagram is actually a process from the
borrowers sub-system. It is the source of one of the inputs to the
"OrderNewBook" process. The task of adding the data flows and
external entities is not automatic, but must be done by hand. This may
include adding elements from other sub-systems to complete the
diagram. Some methods would leave the "Lost Book" process off this
diagram, and have the "book id" data flow coming from nowhere.
Similarly the "Trolley" database, which is actually used by all three sub-
systems could be left off. Whether these should be added or not is a
matter of preference.

The lowest level diagrams in the hierarchy describe the operations
within the sub-systems which are built up from several schemas. In
this example, the only lower level diagrams which could usefully be
produced are for the "Order New Book” and "Process New Book"
processes from the book-buying sub-system, and for the "Stack Shelves”
process from the shelf-stackers sub-system. The diagram for the first of
these is shown in Figure 16 below.

17

price

Bookshop boR
\\m'dcrfoxm Receive
Book
cheque /

book

Orders Pending
Classify
Book
Books Database library book

Trolley

Figure 16 - The "Process New Book" DFD

This diagram has been completed, in that the names of the external
entities, data stores and other processes which act as sources and sinks
have been added. This completes the DFD hierarchy. A DFD hierarchy
may have more levels in the cases where the specification has more
layers of detail. In such cases, more detailed diagrams should be
produlced until no further decomposition of any operation into parts is
useful.

Data flow diagrams are very useful for describing the system, but only
when the specification has been written in the appropriate "state plus
operations" style.

4, Other Diagrams

This section proposes some other diagrams which may be useful and
help to explain a Z specification.

4.1 Showing the Detail of Schema Composition

The first sort of diagram in this section is to show the detail of schema
composition. The purpose of schema composition is to take the state-
after components of one schema and join them to the state-before
components of the second. A diagram can be used to show which
components of the schemas involved are affected. For example, the
following definition in the example specification:

StackShelues & StackFictionShelves$
StackNonfictionShelves3StackReferenceShelves

will give rise to the diagram shown in Figure 17 below.

Stack Shelves

pﬂe3 Stack
Reference
Shelves

pile2]S‘Jt::llsiction shelf-map ——

Shelves
pilel g:z:it 0 shelf-map
Shelves

Figure 17 - Showing the Detail of Schema Composition

In this diagram, arrows indicate the direction of data flow to and from
the operations. These are labelled with the base name of the component
(without decorations or primes). Thus it may be seen that the first part of
the operation, "Stack Fiction Shelves", takes "pile1?" as input and affects
the state of the "shelf-map". The changed "shelf-map” is passed to the
second part, "Stack Nonfiction Shelves”, which takes "pile2?" as input
and itself changes the "shelf-map". This is then passed to the final part,
"Stack Reference Shelves"”, which takes "pile3?" as input. No output is
produced.

This diagram gives a way to check at a glance what is happening when
..aemas are composed. That is, it is easy to see which components are
involved.

4.2 Showing the Detail of Schema Piping

The second sort of diagram is to show the detail of schema piping.
Piping is not part of Spivey's Z [1], but is supported by the ZADOK tool
[8,9]). The purpose of schema piping is similar to schema composition,
but rather than link state variables it takes the outputs of one schema as
the inputs to the second. For example, the specification of the library
system at Annex A contains the following definition:

A

ProcessNewBook & ReceiveBook » ClassifyBook

This operation may be described by the diagram in Figure 18 below.

el
"

Process New Book

book

\ cheq

order Receive Book book

pn'C)/' Classify Book

Figure 18 - Showing the Detail of Schema Piping

As for the schema composition diagram, arrows indicate the direction of
data flow to and from the operations. These are labelled with the base
name of the component (without the decorations "?" and "!"). Thus it
may be seen that the "Receive Book" operation takes in three inputs,
called "book?", "order?” and "price?", and produces two outputs, "cheq!”
and "book!". Of these two outputs, one is piped into the second operation,
to classify the book. The inputs and outputs of the complete process are
those which cross the boundary of the outer box. With this sort of
diagram, what happens to the inputs and outputs when two schemas
are piped can easily be seen.

4.3 Showing Other Schema Operations

The map diagrams proposed in section 2.2 above show only the links
between schemas, they give no detail about the sort of link. That is, is
one schema included in another, or are two schemas conjoined to give a
third? The basic map may be extended to make these distinctions. For
example, consider Figure 19 below.

Order New Process
Book New Book
v p J
Buy From Replace Receive Classify
Catalogue Lost Book Book Book

Figure 19 - Showing Schema Operators

2

The Z definitions corresponding to this diagram are:

OrderNewBook & BuyFromCatalogue .+ ReplacelostBook
and

ProcessNewBook & ReceiveBook » ClassifyBook

The order of the names across the page is important for the definition of
the "Process New Book" operation, as the order of piping is important.
That is, schemal » schema2 is not the same as schema2 » schemal.
This is not the case for the "Order New Book" process, as disjunction is
commutative. Another sort of diagram which says more about two
schemas piped was proposed in section 4.2 above.

4.4 Structure Charts

Rather than drawing simple trees to describe data as proposed in section
2.3 above, more informative diagrams can be drawn, showing how data
is constructed from basic elements. The diagrams are based on Jackson
diagrams [10,11], and are also linked to the data dictionary notation
described in [12].

All types in Z are built up from either given sets or simple branches of
free types (constants) or both. In the diagrams proposed in this section,
these basic elements are the leaves of a tree-shaped diagram, as they
were in the maps proposed in section 2.3 above. However, additional
information is added to describe how the data is constructed, that is,
whether a schema has been used, or a free type, or a sequence.

The diagrams are best illustrated by example.

First, consider the following Z schema:

r loan ————
I n : name
I due : date

The structure chart corresponding to this schema is shown in Figure 20
below.

21

loan

name date

Figure 20 - The Structure Chart for the "loan" Schema
This chart says that a loan is constructed from a name and a date, in
any order. The leaves of the diagram, "name” and "date", are given sets,
that is, they cannot be further decomposed.

Now consider the following Z definition:
loan_record == seq loan

The structure chart corresponding to this definition is shown in Figure
21 below.

loan-record

loan

name date

Figure 21 - The Structure Chart for the “loan-record” Sequence

This chart is again a tree shape, with given sets as leaves. The diagram
has been annotated by the addition of an asterisk in the "loan” box. This
shows that a loan-record is an iteration (sequence) of loans. Each loan is
constructed from a name and a date as before.

The other sort of annotation on a structure chart is a small circle, which

is used to indicate a selection. To illustrate this, consider the following
free type definition:

book_type ::= fiction nonfiction reference

The structure chart corresponding to this is shown in Figure 22 below:.

book-type

o 2 o
fiction nonfictiun reference

Figure 22 - The Structurc Chart for the "book-type” Free Type

Note that in tlis d‘agram there are three leaves, corresponding to the
three constants "ficcion”, "nonfiction” and "reference”. A small circle is
drawn in all three hoxes to indicate a selection, that is, an element of the
ty.e "bork-type" may be only one of "fiction", "nonfiction” and
"reference".

Using these annotations, complicated structure charts can be built up.
As an example, consider the following Z schema:

- Vibrary_book —
b : book

b_id : book-id

b_ty : book_type
I_rec : loan_record

The types in this schema are the given sets "book"” and "book-id", the free
type "book-type" and the sequence "loan-record”. The corresponding
structure chart is shown in Figure 23 below.

library-book

book book-id book-type

loan-record

_ o o 0 1
fiction nonfiction reference oan

/\

name date

Figure 23 - The Structure Chart for the "library-book"” Schema

As before, the leaves are the given sets and the constants from the free
type definition. So, a library book is constructed from: a book and a book-
id, which are both given sets; a book-type, which is one of "fiction",
"nonfiction” and "reference”; and a loan record, which is a sequence of
loans, each of which is constructed from a name and a date.

4.5 Entity Life Histories

Entity life histories are used to show what can happen to an entity, and
in what order. These diagrams are again based on Jackson diagrams,
and are also used in SSADM [13]. These diagrams cannot be generated
automatically from a Z specification - historical information is not
usually part of a Z specification and nor is time-ordering of operations.
However, the operations that affect an entity, and appear on the entity
life history, are operations which are defined in the Z specification.
Figure 24 below shows an entity life history for a book from the library
system example at Annex A.

Book

Process Borrow Loan Lose
New Book Book Part Book
*
Loan
Return Borrow
Book Book

Figure 24 - An Entity Life History for a Book

A book starts life in the system when it arrives from the book shop, and
ends when it is lost. In between these events, it is first borrowed, and
then repeatedly returned and borrowed again until it is lost. The
operations which affect the book are all specified as operation schemas
in the formal specification.

The advantage of these diagrams is that they show how the operations
defined in the Z specification are used. That is, they provide a
framework for adding more information about the way the system is to
work.

4.6 Venn Diagrams

Venn diagrams are a well-known way of illustrating relationships
between sets, and, as Z is based on set theory, may well be useful to
illustrate a Z specification. Examples of Venn diagrams are given in
Figure 25 below.

. '
Figure 25 - Venn Diagrams

The diagram on the left shows the intersection (the shaded region), of
two sets A and B. The sets may be schemas, or ordinary sets perhaps
described by predicates. In the former case this diagram shows the
conjunction of the schemas, and in the latter case it shows the
intersection of the sets. Similarly, the diagram on the right shows the
union of A and B (the shaded region). As before, A and B may be
schemas or sets. If the former then this diagram shows the disjunction
of the schemas and if the latter then it shows set union.

2.Conclusions

This paper has given examples of many diagrams which could be used
to illustrate a Z specification, at various levels of detail. It is not
suggested that all these diagrams should be produced for all
specifications, just those which are believed to be useful in any
particular case.

The diagrams proposed fall into three categories: maps, data flow
diagrams, and others. Maps are used to show the structure of a
specification, from the module level down to the structure of data. Also,
maps can show how the schemas in a specification are related. Data
flow diagrams, on the other hand, illustrate the movement of data
around the system being specified and which operations affect which
parts of the state. Such diagrams are only applicable to a specification
written in a "state plus operations” style. The final category contains
diagrams which show the detail of schema composition and piping as
well as other schema operations such as disjunction or conjunction.
These diagrams expand the maps by describing how schemas are built
up by operations, rather than just schema inclusions. Other diagrams
proposed are: structure charts, which are an alternative to the maps
proposed in section 2.3; entity life histories, to show the order in which
operations can affect things in the system; and Venn diagrams, to show
the relationships between sets.

Diagrams make Z specifications much easier to understand, thus
making them easier to validate. Diagrams help the writer of a
specification, as they show the overall structure of the specification and
how different parts of it combine. This high level view of a Z specification
is necessary for understanding, and is very difficult to obtain from

%

reading the formal text itself. The bottom-up approach of Z makes this
particularly evident.

If diagrams are to be used with any certainty that they accurately reflect
the current version of a specification, then they must be able to be
generated automatically, or at least in a tool-supported way. With the
maps discussed in section 2, this should not be a problem. All the
information needed is in the Z specification - it should require little effort
to modify an existing Z syntax- and type-checking tool to produce these
diagrams. Of course, the layout of the diagrams will need to be human-
assisted to make them easy to read. Similarly, rules have been formally
specified to produce data flow diagrams from a Z specification. Thus tool
support for this process is possible. Some of the diagrams described in
section 4 pose more problems, particularly entity life histories, as the
information required to produce them is not usually part of a Z
specification. ‘

In any case, a relationship must be defined between the diagrams and
the formal specification to check that they are compatible. This
relationship is vital for ensuring compatibility when the specification is
updated or changed in any way.

This memorandum is the first step towards determining which
diagrams should be produced, by proposing a set of options to be
considered. Comments on the proposed diagrams are sought from the
wider Z community. It is hoped that mechanisms for producing
diagrams will be incorporated into future Z support tools.

References

[1] J M Spivey, "The Z Notation: A Reference Manual”, Prentice-Hall
International, 1989

[21 I Hayes (editor), "Specification Case Studies”, Prentice-Hall
International, 1987

[31 G P Randell, "Translating Data Flow Diagrams into Z (and vice
versa)’, RSRE Report 90019, October 1990

(4] G P Randell, "Improving the Translation from Data Flow
Diagrams into Z by Incorporating the Data Dictionary”, RSRE
Report 92004, January 1992

[51 R Macdonald, "Z Usage and Abusage”, RSRE Report 91003,
February 1991

[6] "The Yourdon Structured Method (YSM) - An Introduction”,
Yourdon Inc.

[71 A Smith, "On Recursive Free Types in Z", RSRE Report 91028,
August 1991

[8] C T Sennett, "Review of Type Checking and Scope Rules of the
Specification Language Z", RSRE Report 87017, 1987

(91 G P Randell, "ZADOK User Guide”", RSRE Memorandum 4356,
1990

(10] M Jackson, "System Development’, Prentice-Hall International,
1983

(11] J R Cameron, "An Overview of JSD", IEEE Transactions on
Software Engineering, vol SE-12 no 2, February 1986

(121 P T Ward & S J Mellor, "Structured Development for Real-Time
Systems Volume 1: Introduction & Tools", Yourdon Press, 1985

[13] G Longworth & D Nicholls, "SSADM Manual Version 3", NCC
Publications, December 1986

Acknowledgement

The author would like to thank Clare Harrold, Andrew Wood and
Ruaridh Macdonald (all of DRA, Malvern) for their suggestions and
comments on the sorts of diagrams they would like to see illustrating a Z
specification.

Al Introduction

This annex contains a Z specification of a library system. The
specification is in five parts: :

1. The specification of the types of data which are used by the
different sub-systems of the library.

2. The book-buying sub-system which is responsible for ordering
new books from a bookshop, paying for them when they arrive,
and preparing them for being put on the library shelves ready
to be loaned to borrowers.

3. The borrowers sub-system which is responsible for keeping
track of registered borrowers and the books they have out on
loan, and includes functions to add new borrowers, for a
borrower to take out and return a book, and to lose a book.

4. The shelf-stackers sub-system, which is responsible for
stacking returned and new books on the shelves, and for
sending damaged books away to the bookbinders for repair and
getting them back again.

5. The overall system, where the operations which cross the sub-

system boundaries are specified. This specification actually
only contains one such operation.

A2. Basic Tvpes

This section introduces the basic types which are needed for the rest of
the specification.

[book]

The library is concerned with books.

[author, publication_date, publisher, title]

There are various pieces of information associated with a book. These
are its author, the date it was published, the publisher and its title.

A-1

- book_info)
ti o title

au : author

pub : publisher

p—d : publication_date

For convenience, all these pieces of information are grouped together
into one schema.

book_type ::= fiction nonfiction | reference

Books also have types, that is, they may be a fiction book, a non-fiction
book or a reference book. It is possible to have two copies of the same book
classified differently. For example, one copy of a dictionary may be
classed as a non-fiction book and available for loan while another copy
may be classed as a reference book and kept permanently in the library.

book_data ——————
b_i : book_info
b_t : book-type

e i |

The information about a book and its type are grouped together into one
schema.

[book_id]

The library system has to be able to distinguish between two copies of the
same book, so a set of unique identifiers for books is introduced.

Books which have been bought are not put directly onto the shelves of the
library. They are first prepared by being stamped with their identifier
and type, and have a loan record sheet stuck in them to record the
borrowers and the date due back when they are loaned out.

[date, name]

The library has access to a calender, which is used to look up the date a
book will be due back before it is borrowed. The set of borrowers’ names
is also introduced.

'

oan -
n : name
due : date

A-2

loan_record == seq loan

The loan record sheet is a list of all the borrowers who have borrowed
that book and the date by which they should have returned it.

r library_book
b : book
b—-id : book.id

b_ty : book_type
l_rec : loan_record

A book which has been prepared is stamped with its identifier and type,
and has a loan record sheet (initially empty) stuck in it. It is now a
library book.

This completes the specification of the basic types. These types will b
used in the subsequent four sections, which describe the three sub-
systems which make up the library system, and the overall system itself.

A3, The Book-Buving Sub-Svstem

This section specifies one of the sub-systems, namely the system
responsible for buying new books. It uses information from the previous
section on types.

bookmap : book_id -+ book_data
| ,

[BooksDatabase ,

All of the data pertaining to books is held in one database. This database
is indexed by the unique book identifier.

Trolley —_
[pile : P library_book

The pile of books ready to go onto the shelves are put on a trolley. The
actual task of putting the books out is done by another department of the
library (specified in Section A5).

Books are ordered for two reasons. The first is that a book is lost by a
borrower, and the second is that a new book is seen in a catalogue from a
bookshop.

[price]

A-3

Books cost money, so each book has a price.

catalogue_entry —
b_-i : book_info

pr : price

J

catalogue == seq catalogue_entry

The catalogue is just a list of entries, represented in Z as a sequence.
Each entry consists of the description of the book (the book information)
and its price.

In order to buy a book, an order must first be placed.

[address, order_number]

Some more sets are needed to represent addresses so the book shop
knows where to send the book, and order numbers to allow each
separate order form to be easily identified.

| our_address : address
A particular address is introduced.

r order_form ——
| o.n : order_number

| bi : book-info

l add : address

An order form has a number, the information describing the book
wanted, and the address to send the book to. Only one book is ordered per
form.

- OrdersPending)
ordermap : order_number -» order_form

Yon:dom ordermap - (ordermap on).o_n = on

The library keeps track of all orders which have been sent but for which
no book has yet been received. The order number used to index each
order form must be one which appears on the order form itself.

right_info : book ¢ book_info

The information for a given book needs to be checked to ensure it is right.
That is, whether the title recorded for it is the one which appears on its
front cover, etc. The exact definition of this relation is left unspecified.

right_.type : book ¢ book_type

A check is also needed to ensure that a book has been given the right
type. That is, that a novel is not classified as a non-fiction book. The
exact definition of this relation is again left unspecified.

The operations performed by this sub-system, those of ordering a book,
receiving a book, and classifying a book may now be defined.

The first operation is to order a new book from the catalogue.

- BuyFromCatalogue S
ZBooksDatabase

AOrdersPending

cat? : catalogue

order! : order_fornm

ordert.o_n new_number

order!.b_i = this_book
order!.add = our_address
ordermap' = ordermap u {new_number +— order!}
where
new_number : order_number
this_book : booxk_info
c—e @ catalogue_entry

c—¢ ¢ rng cat? A ce.b_i = this_book
new_number ¢ dom order_map

This operation specifies that the order form that sent out is correctly
filled in. That is, it must be given a new number which has not already
been used (to allow the order to be easily identified); the book requested
must be from the catalogue; and the address must be correctly filled in to
ensure that the book is sent to the requesting library and not to
somewhere else. A copy of this order form is then added to the pending
orders file.

Books are also bought to replace lost ones.

A-5

- ReplacelLostBook ¥
ABooksDatabase
AOrdersPending
lost? : book.id
order! : order_fornm

order!.o_n = new_number

order!.b_i = (bookmap lost?).b_i

order!.add = our_address

ordermap' = ordermap u {new_number +— orderl!}
bookmap' = { lost?)} 4 bookmap

vhere

new_number : order_number

new_number ¢ dom order_map

Replacing a lost book is similar to buying a book from a catalogue, in
that an order is sent to the bookshop and a copy put on file. The books
database is consulted to find the book information needed, using the
identifier it receives from the borrowers sub-system. The record of the
lost book is removed from the books database to allow the identifier to be
re-used when the new copy comes in (if required).

OrderNewBook & BuyFromCatalogue + ReplacelLostBook

Every book ordered is either bought from a catalogue, or is bought as a
replacement for a lost book.

The second operation is the one which receives the book from the book
shop.

[cheque]

The set of cheques is introduced, to allow the library to pay for books it
has received.

right_amount : cheque e price

A cheque must be for the right amount. The exact form of this relation is
left unspecified.

r ReceiveBook ,
AOrdersPending
book?, book! : book

order? : order_form
price? : price
cheq! : cheque

order? ¢ rng ordermap ~ order?.add = our_address
right—info (book?, order?.b_i)

ordermap' = ordermap » { order?)

right_amount (cheq!, price?)

book! = book?

This process checks that: 1) the order received is one that has actually
been sent to the book shop; 2) the book is the right one, that is, that its
title, author etc. match the information on the order form; and 3) the
order has the right address on it. (The third predicate is actually
unnecessary, as it is implied by the first. But it helps to make things
clear.) If these checks are passed then the copy of the order on the
pending file is removed. A cheque is sent back to the bookshop for the
right amount to pay for the book, and the book is passed on to the next
stage.

- ClassifyBook
ABooksDatabase
ATrolley

book? : book

pile' = pile u { 1ib }

bookmap' = bookmap u { bid — bd)}
wvhere

bid : book_id

bd : book_data

lib : library_book

bid ¢ dom bookmap

right_info (book?,bd.b_i) A right_type (book?,bd.b_t)
lib.b = book? A lib.b—id = bid

lib.b_ty = bd.b_t A lib.l_rec = <

The process of classifying a book involves preparing the book by
stamping it with its identifier and classification and sticking an empty
loan record sheet in it, and then adding it to the pile on the trolley. The
information about the book is recorded in the books database.

ProcessNewBook & ReceiveBook » ClassifyBook

A new book is processed in these two stages.

This completes the specification of the book-buying sub-system.
A4.The Borrowers Sub-Svstem

[borrower—id]

A set of identifiers is introduced, so that the library can assign a unique
identifier to each borrower to allow them to be distinguished.

r application_form —
n : name

ad : address
l ,

When a person wishes to join the library and become a borrower, they
submit an application form. This form has their name and address on
it.

valid—_forms : IP application_form

The forms that are correctly filled in are valid.

membership—_card
[b_id : borrower_id

' —

The library issues a membership card to each borrower with the
identifier assigned to that borrower on it.

Borrouers “
[borrowers : borrower_id -+ application_form

The library maintains a record of its borrowers, by keeping the
application form for each in a file. The unique identifier assigned to
each borrower is used as the index for the file.

A-8

- AddNewBorrower —_

ABorrowers
ap? : application_form
mc! : membership_card

ap? ¢ valid_fornms

mcl.b_id = bi
borrowers' = borrowers u { bi — ap? }
where

bi : borrower_id

|
I bi ¢ dom borrowers

When a person wishes to become a borrower, they submit an application
form. If the form is valid then a new borrower identifier is assigned, and
the form filed. The new borrower is given a membership card with the
borrower identifier on it.

r Books_on_loan \

on_loan : book_id -» borrower_id
l 4

The library has a file in which to record who has which books out on
loan at the current time. Any one borrower may have several books out
at once, but one book can only be with one borrower at a time.

A-9

- BorrowBook —_
ZBorrouwers

ABooks_on_loun

due? : date

mc?, mc! : membership_card
1b?, 1b! : library-book

mc?.b_id ¢ dom borrowers

1b?.b_ty * reference

on_loan' = on_loan u { 1b?.b_id +~ mc?.b_id }
I1bl.b = 1b?.b A 1bl.b_id = 1b?.b_id

Ibl.b_ty = 1b?.b_ty ~ Ibl.l_rec = 1b?.1_rec =~ <>
mc! = mc?

where
} : loan
{
| 1.n = (borrowers (mc?.b_id)).n A l.due = due?

I}

To borrow a book, a borrower gives the book to the librarian along with a
membership card. The librarian checks that the borrower's identifier is
a valid one, and that the book is not a reference book. The loan record
sheet in the book is updated with the borrower's name and the date by
which it must be returned. This date is found from the calendar. The file
of books on loan is updated to show this loan and the book and
membership card are then returned to the borrower.

- ReturnBook —_

ABooks_on._loan
ATrolley
1b? : library_book

1b?.b_id ¢ dom on_loan
on_loan' = { 1b?.b_id } 4 on_loan
pile' = pile u { 1b?)

J

When a book is returned, the librarian checks that it was one which had
been recorded as being out on loan. The file of books on loan is then
updated by removing the record for this book, and the book is put on the
trolley. The task of putting the book back is carried out by another
department of the library, specified in section A5.

A-10

r LoseBook ,
ABooks_on_loan

mc?, mc! : membership-card

lost?, lost! : book_id

lost? — mc?.b.id ¢ on_loan
on_loan' = { lost? } 4 on_loan
mc! = mc? A lost! = Jost?

)

Sometimes a borrower loses a book. When this happens, the borrower
presents a membership card to the librarian, and says which book Las
been lost. A check is made that the borrower had that book on loan, and
the record of this loan is removed from the on loan list. The borrowers
card is returned, and the identifier of the book concerned is passed to the
book buying sub-system to replace it. A more realistic library would
probably impose a fine for losing a book! '

This completes the specification of the borrowers sub-system.
Ab. The Shelf-Stackers Sub-Svstem

[location]

Every book has a location, that is, where it is on the shelf in the library.

fiction_books == {library_book l b_ty = fiction)
nonfiction_books == {library_book | b_ty = nonfiction)
reference_books == {library_book I b_ty = reference}

Library books are divided into three sets, depending on their type (fiction,
non-fiction or reference).

This sub-system is concerned with the shelves of the library.

Shelves
shelf_map : library_book -» location

The library shelves consist of library books at their locations.

A-11

N

- SortBooks)
ATrolley

pilet! : P fiction_books

pile2! : IP nonfiction_books

pile3l : IP reference_books

(pilet! u pile2! u pile3!) = pile
pile' = {}

|

The operation to sort the books from the trolley ready to put them back on
the shelves takes all the books and puts them into three piles, one for
each type. The trolley ends up empty.

is_ordered : PP (library_book -» location)

A shelf must be ordered correctly. The actual definition of being ordered
is left unspecified.

There are three parts to stacking the shelves, one for each of the type of
books being stacked. When a pile of books, of whichever type, is stacked
on a shelf, the books are put in the right places so that the shelf ends up
properly ordered.

- StackFictionShelves
AShelves
pile1? : IP fiction_books

dom shelf_map' = dom shelf_map v pilel?
is_ordered (shelf_map')

r StackNonfictionShelves
AShelves
pile2? : P nonfiction_books

dom shelf_map’ = dom shelf_map u pile2?
is~ordered (shelf_map')

A-12

StackReferenceShelves .
AShelves
pile3? : IP reference_books

dom shelf_map' = dom shelf_map u pile3?
is—ordered (shelf_map')

StackShelves & StackFictionShelvess

StackNonfictionShelvesjStackReferenceShelues

The shelves are stacked by stacking each type of book in turn.

-

SendBook forRepair \
AShelves
book! : library_book

book! ¢ dom shelf_map
shelf_map' = {book!} 4 shelf_map

J

A book which is currently on the shelf can be removed and sent for

repair when it is damaged.

-

ReceivellendedBook ————
ATrolley
book? : library_book

pile' = pile u {book?}

When a book is mended, it is sent back to the library and is put on the

trolley, from where it will be stacked back on the shelves.

This completes the Z specification of the shelf-stackers sub-system.

A-13

AS6. The Overall Svstem

The final part of this specification specifies those operations which cross
sub-system boundaries. In this example, there is only one, and that is
concerned with replacing a lost book. The operation is specified as
follows:

LostBook & LoseBook » ReplacelostBook

The identifier of the lost book from the borrowers department is sent to
the book buying department who order a new book to replace it.

This completes the example specification.

A-14

REPORT DOCUMENTATION PAGE DRIC Reference Number (i known)

Overall security ciassification of sheet UNGCLASSIFIED
(As far as possible this sheet should contain only unclassified information. If it is necassary to enter ciassified information, the fieid concerned

must be marked to indicate the classification, eg (R), (C) or (S).

Originators Reference/Report No. Month Year
MEMO 4587 MARCH 1992
Originators Name and Location
DRA, ST ANDREWS ROAD

MALVERN, WORCS WR14 3PS

Monitoring Agency Name and Location

Title
Z THROUGH PICTURES

Report Security Classificaton Title Classification (U, R, C or §)
UNCLASSIFIED U

Foreign Language Title (in the case of translations)

Conference Details

Agency Reference Contract Number and Pericd

Project Number Other References

Authors Pagination and Ref
RANDELL, G P 42

Abstract

The purpose of this memorandum is to propose diagrams which may be generated from a Z specification
either fully automatically or with human intervention. The main purpose of such diagrams is to illustrate the
specification and thus help a reader to understand it and to validate it. Examples of the diagrams proposed
are given.

Abstract Classification (U, R, C or S)
u

Descriptors

Distribution Statement (Enter any imitations on the distribution of the document)
UNLIMITED

